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ABSTRACT

The solar atmosphere is known to contain many different types of wavelike oscillation. Waves and other

fluctuations (e.g., turbulent eddies) are believed to be responsible for at least some of the energy transport

and dissipation that heats the corona and accelerates the solar wind. Thus, it is important to understand the

behavior of magnetohydrodynamic (MHD) waves as they propagate and evolve in different regions of the Sun’s

atmosphere. In this paper, we investigate how MHD waves can affect the overall plasma state when they reflect

and refract at sharp, planar interfaces in density. First, we correct an error in a foundational paper (Stein 1971)

that affects the calculation of wave energy-flux conservation. Second, we apply this model to reflection-driven

MHD turbulence in the solar wind, where the presence of density fluctuations can enhance the generation of

inward-propagating Alfvén waves. This model reproduces the time-averaged Elsasser imbalance fraction (i.e.,

ratio of inward to outward Alfvénic power) from several published numerical simulations. Lastly, we model

how the complex magnetic field threading the transition region between the chromosphere and corona helps

convert a fraction of upward-propagating Alfvén waves into fast-mode and slow-mode MHD waves. These

magnetosonic waves dissipate in a narrow region around the transition region and produce a sharp peak in the

heating rate. This newly found source of heating sometimes exceeds the expected heating rate from Alfvénic

turbulence by an order of magnitude. It may explain why some earlier models seemed to require an additional

ad-hoc heat source at this location.

Keywords: Alfvén waves (23) – Interplanetary turbulence (830) – Magnetohydrodynamics (1964) – Solar corona

(1483) – Solar coronal heating (1989) – Solar wind (1534)

1. INTRODUCTION

The Sun’s photosphere, chromosphere, and corona are

highly dynamic, exhibiting stochastic and intermittent vari-

ability across many orders of magnitude in space and

time. These fluctuations have long been suspected to

be important contributors to how the plasma is heated

(see, e.g., Aschwanden 2006; Parnell & De Moortel 2012;

Fletcher et al. 2015; Van Doorsselaere et al. 2020). Many

of the proposed conceptual mechanisms involve os-

cillating magnetohydrodynamic (MHD) waves. Some

propose that convective motions drive oscillations at

the solar surface that propagate up to larger heights

and then dissipate to provide coronal heating (Alfvén

1947; Spruit 1981; Musielak & Ulmschneider 2002;

Cranmer & van Ballegooijen 2005; Jess et al. 2023). Oth-

Corresponding author: Steven R. Cranmer

ers suggest that the evolving magnetic field triggers iso-

lated bursts of magnetic reconnection that generate wave

activity throughout the solar atmosphere (Hollweg 1990;

Axford & McKenzie 1992; Kigure et al. 2010; Lynch et al.

2014).

In addition to the relatively straightforward mechanisms

described above, there are likely to be many other indirect

ways for MHD waves to be generated and to evolve (i.e., to

transform their properties as they propagate from one place

to another in the solar atmosphere). The literature on both

linear and nonlinear mode conversion is vast, and we can

only provide pointers to a small fraction of it for further

study. When the magnetic field strength and other back-

ground plasma properties (e.g., density and temperature)

vary with position, it allows waves of one type to transform

into another (see, e.g., Lee & Roberts 1986; Bogdan et al.

2002; McDougall & Hood 2007; Cally & Goossens 2008;

Tarr et al. 2017; Cally 2022; Huang et al. 2022). In addition,
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2 S. R. CRANMER & M. E. MOLNAR

when waves encounter inhomogeneities such as velocity

shears, there can arise both linear (Bavassano et al. 1978;

Kaghashvili 1999, 2007, 2013; Hollweg & Kaghashvili

2012) and nonlinear (Nakariakov et al. 1998; Bacchini et al.

2022) channels to convert some waves into different

modes. In many realistic inhomogeneous environments,

the modes themselves become “mixed” and the usual sep-

aration into ideal fast, slow, and Alfvén modes is not

possible (e.g., Goossens et al. 2019). When MHD waves

propagate through random or stochastic background con-

ditions, it can trigger phenomena such as resonances,

instabilities, and turbulent cascade (Valley 1971, 1974;

Lou & Rosner 1986; Li & Zweibel 1987; Murawski et al.

2001; Yuan et al. 2015; Srivastava et al. 2021; Morton et al.

2023). Lastly, when wave amplitudes become large, there

can arise various varieties of shock, soliton, jet, and vor-

tex phenomena that render meaningless the dividing lines

between textbook “normal modes” of wavelike oscilla-

tion (e.g., Vasquez & Hollweg 1996; Hasan et al. 2003;

Ryutova & Hagenaar 2007; Cranmer & Woolsey 2015;

Snow et al. 2018).

Despite the dizzying array of proposed mechanisms of

MHD wave mode conversion, there are a few that we be-

lieve have not received sufficient attention. Specifically, in

this paper we examine some of the consequences of a model

first discussed by Stein (1971). That paper studied the con-

sequences for a wave obliquely incident on a sharp pla-

nar boundary at which the plasma density varies abruptly.

In ideal MHD, a wave of one type (i.e., slow-mode, fast-

mode, or Alfvénic) produces reflected and transmitted power

in waves of all three types. In Section 2, we describe this

model in detail and correct an error in one of the equations

given by Stein (1971). In Section 3, we apply this model

to the solar wind in order to better understand how density

fluctuations can enhance the large-scale reflection of imbal-

anced Alfvénic turbulence. In Section 4, we simulate the

Sun’s complex “magnetic carpet” in order to see how Alfvén

waves incident on the sharp transition region (TR) will nat-

urally transfer some of their energy to both upward and

downward propagating fast/slow-mode magnetosonic waves.

These compressive waves dissipate very efficiently at the TR,

so they appear to provide an added “pulse” of coronal heat-

ing that has not been considered before. Lastly, in Section 5,

we conclude by summarizing these results, discussing pos-

sible future improvements, and suggesting some additional

applications of the Stein (1971) theory.

2. REFLECTION AND TRANSMISSION OF MHD

WAVES

Here we describe the setup of an idealized MHD system

containing a planar discontinuity in the background plasma

parameters. We often follow the notation of Stein (1971),

Figure 1. Coordinate system and vectors for the idealized MHD

system of wave reflection and transmission. Wavenumber k (red)

always remains in the x-z plane, and it is offset from the z-axis by

a polar angle θk. Spherical coordinate angles α and β describe the

magnetic field vector (blue).

but we also correct an error in one of Stein’s equations that

led to the normal component of the total wave energy flux to

not be conserved. We also take inspiration from additional

studies of waves at sharp interfaces such as Vasquez (1990),

Terradas et al. (2011), and Vickers et al. (2018), and we an-

ticipate that many of the results discussed below will also be

valid for environments where the interface has a finite thick-

ness smaller than the other relevant length-scales (e.g., scale

heights and wavelengths) of the medium.

We define coordinates such that the discontinuity occurs

in the plane described by z = 0, and in general the mass

density ρ, temperature T , and magnetic field strength B0 can

be different in the two homogenous half-spaces defined by

z < 0 and z > 0. In this work, we choose to keep the both the

magnetic field and the background gas pressure (P0 ∝ ρT )

constant across the discontinuity. Thus, we specify ρ1 and T1

for z < 0, and ρ2 and T2 for z > 0, with

ρ1/ρ2 = T2/T1 . (1)

Figure 1 illustrates various quantities in the Cartesian coordi-

nate system defined by the discontinuity in the x-y plane. An

incident MHD plane-wave travels up from the z < 0 region,

encounters the discontinuity, and creates a set of transmitted

(z > 0) and reflected (z < 0) waves as a response. Each

of those linear waves has its own wavenumber vector k, but

they all share the same angular frequency ω.

The angle between k and the magnetic field vector B0 is

defined as ΘkB , with

cosΘkB = sin θk sinα cosβ + cos θk cosα . (2)

The characteristic speeds of the plasma are defined as

VA =
B0√
4πρi

and cs =

√

γP0

ρi
(3)
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for the Alfvén speed and adiabatic sound speed, respectively,

with i = 1, 2 depending on the region being described. We

always used γ = 5/3, and we also used the ideal-MHD ver-

sions of the fast, slow, and Alfvénic dispersion relations that

were given for this coordinate system in Equations (3)–(7) of

Stein (1971).

In general, all three types of MHD wave modes may be

generated above and below the discontinuity. A range of

properties must be continuous at the interface, including the

frequency ω and the in-plane component of the wavevector

kx. The dispersion relations are then solved for kz on both

sides of the interface. However, Stein (1971) discussed how

some combinations of parameters lead to one or both of the

resulting fast-mode waves having a purely imaginary nor-

mal wavenumber kz . In these cases, the fast-mode wave is

evanescent and has zero energy flux in the direction normal

to the discontinuity. However, this mode still needs to be

taken into account when solving for the amplitudes at the

interface. We used a complex-variable form of LU decom-

position (Turing 1948; Anderson et al. 1999) to solve the as-

sociated 6 × 6 linear system for the amplitudes.

Once the dimensionless amplitudes A are known for the

reflected and transmitted wave modes, one can compute Fz ,

the component of energy flux normal to the discontinuity, for

each mode. Strictly speaking, all reflected modes must have

Fz < 0 and both the incident and transmitted modes must

have Fz > 0. Note that Equation (B4) of Stein (1971) de-

fined the transverse velocity amplitude of Alfvén waves as

u⊥ = AVA |êk × êB| = AVA sinΘkB , (4)

where êk and êB are unit vectors parallel to k and B0.

However, Equation (B16) of Stein (1971) defined the z-

component of the wave energy flux using the definition A =

u⊥/VA. Using the proper definition above, the corrected ex-

pression for the Alfvén-wave flux becomes

Fz = A2ρ0V
3
A cosα sin2 ΘkB

cosΘkB

| cosΘkB|
. (5)

The corresponding expressions for fast and slow magne-

tosonic waves given by Stein (1971) are correct.

Lastly, we define the reflection and transmission coeffi-

cients

Rij =

∣

∣

∣

∣

Fz,i(reflected)

Fz,j(incident)

∣

∣

∣

∣

and Tij =

∣

∣

∣

∣

Fz,i(transmitted)

Fz,j(incident)

∣

∣

∣

∣

(6)

where, in general, the subscript i can be A, F, or S (for any of

the three modes generated at the interface) and the subscript

j (for the incident wave) is chosen as only one of either A, F,

or S. We always verified that the numerical results satisfy

∑

i

(Rij + Tij) = 1 , (7)

and that the results are independent of the numerical value

chosen for the wave frequency ω. Throughout the remainder

of this paper, we consider only the case of the incident waves

being Alfvénic (i.e., j = A), and we discuss other scenarios

in Section 5.

3. ENHANCED REFLECTION OF ALFVÉNIC

TURBULENCE

As a first application of the idealized system described

above, we would like to better understand the results of nu-

merical simulations that contain both counter-propagating

Alfvén waves and stochastic density fluctuations. Inves-

tigations of MHD turbulence in the solar corona and so-

lar wind have found that there is more Alfvén-wave reflec-

tion when the density fluctuations are stronger (see, e.g.,

van Ballegooijen & Asgari-Targhi 2016, 2017). Thus, we ex-

plore whether it is possible to model this behavior as a series

of reflections and transmissions through multiple discontinu-

ities.

3.1. Alfvén Waves at a Single Interface

When the angle β = 0, the background magnetic field vec-

tor B0 lies in the x-z plane defined by the wavevector k and

the normal to the discontinuity. In that case, the 6 × 6 matrix

decouples into a 2 × 2 matrix for Alfvén waves and a 4 × 4

matrix for the fast and slow modes. Vasquez (1990) explored

this limiting case and discussed the straightforward analytic

solution for Alfvén waves,

RAA =

(

1−∆

1 +∆

)2

, (8)

where ∆ =
√

ρ2/ρ1. Interestingly, this result is indepen-

dent of the values of α and θk, as well as independent of the

background magnetic field strength. Also, it is the same even

if the incident wave goes in the other direction through the

interface (i.e., if the density jump ∆ is replaced by 1/∆).

3.2. Alfvén Waves at a Multiple Interfaces

For a system containing multiple interfaces (all assumed to

be mutually parallel planes with identical magnitudes ∆), it

is possible to determine the net effect of Alfvén-wave trans-

mission and reflection through them. Even for just two inter-

faces, the total reflection coefficient is the result of an infinite

series of reflected waves. Figure 2 illustrates this infinite se-

ries. Specifically, the first reflection is immediate. The sec-

ond is the result of one transmission, then one reflection (at

the second interface), then another transmission back toward

the source. The third is the result of one transmission, then

three “internal bounce” reflections, then another transmission

back to the source. The fourth is the result of one transmis-

sion, then five reflections, then another transmission, and so
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Figure 2. Illustration of how reflection from two parallel interfaces

results in an infinite series of reflected components.

on. Using the shorthand notation R1 for the reflection coeffi-

cient given in Equation (8), the total reflection coefficient for

two interfaces is given by

R2 = R1 + T 2
1 R1

(

1 +R2
1 +R4

1 +R6
1 + · · ·

)

. (9)

Note that the following infinite series converges,

∞
∑

n=0

R2n
1 =

1

1−R2
1

(10)

as long as |R1| < 1. Thus, given that T1 = 1 − R1 for

the interaction at a single discontinuity, the entire expression

simplifies to

R2 =
2R1

1 +R1
. (11)

This kind of calculation has been generalized to N interfaces,

with a general solution given by

RN =
NR1

1 + (N − 1)R1
. (12)

Note that, in the limit of N → ∞, the total reflection coeffi-

cient RN → 1.

These results depend on the multiple interfaces being ef-

fectively “sharp” in comparison with the length scales of

the waves (i.e., wavelengths corresponding to components

of k normal to the interface). It is also likely that the re-

sults depend on the interfaces being positioned at least one or

more wavelengths apart from one another, rather than being

stacked close together. For additional examples of Alfvén-

wave reflection and transmission at multiple interfaces, see

Hollweg (1984) and De Pontieu et al. (2001).

3.3. Application to Compressible Fluctuations

To apply these concepts to simulations of heliospheric tur-

bulence, we need to model a given spatial distribution of den-

sity fluctuations as a series of sharp jumps. Thus, given the

statistical properties of the fluctuations, the goal is to com-

pute the magnitude ∆ for each (presumed identical) jump.

If the fluctuations can be approximated as a periodic wave-

form, with a mean density ρ0 and variations that extend to

±∆ρ above and below that mean, then

∆ =

√

ρ0 +∆ρ

ρ0 −∆ρ
(13)

as a representative interface ratio. However, for specific

waveform shapes, the amplitude ∆ρ relates to the root-mean

squared (rms) density—i.e., the square root of the variance—

in different ways. Using δρ/ρ0 for the ratio of the rms to the

mean, we can write

∆ =

√

1 + (δρ/ρ0)
√
s

1− (δρ/ρ0)
√
s
, (14)

where s is a dimensionless shape factor; see, e.g., Equa-

tion (38) of Cranmer et al. (2007). For a square-wave train,

s = 1. For a sinusoidal wave, s = 2. For a sawtooth or

triangular waveform, s = 3.

Figure 3(a) shows the results of using all three values of s

to predict the reflection from a single interface. In this case,

the plotted quantity is the ratio of inward to outward Elsasser

(1950) amplitudes, which is often specified for simulations

of imbalanced MHD turbulence. Here, we associate this ratio

with the reflection coefficient as

Z−

Z+
=

√

R1 . (15)

We also note that the Alfvén speed appears in the definitions

of Z±, and we presume that the unperturbed density ρ0 is

used in these definitions. In the limit of weak density fluctu-

ations, this gives

Z−

Z+
≈

√
s

2

(

δρ

ρ0

)

. (16)

For simplicity, we use s = 1 for the models of multiple re-

flections discussed below. In Figures 3(b) and 3(c) we show

how the total amount of Alfvén-wave reflection varies for dif-

ferent numbers of interfaces; i.e., in this case the Elsasser

amplitude ratios are assumed to be equal to R1/2
N , for various

values of N .

We compare the multiple-reflection model curves with

the outputs of several different MHD turbulence simula-

tions. Table 1 provides the base-10 logarithms of both

Z−/Z+ and δρ/ρ0, extracted at various heliocentric dis-

tances in these simulations. Specifically, data points
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Figure 3. Degree of Alfvén-wave reflection, plotted as an ampli-

tude ratio, as a function of a normalized rms density fluctuation.

(a) For N = 1, we vary the shape factor s = 1 (black curve),

s = 2 (blue curve), s = 3 (green curve). (b) For various val-

ues of N , we compare model results (see legend for curve col-

ors and types) with data points extracted from numerical simula-

tions. (c) Same as (b), but for different simulations. Reference

abbreviations are vB16 (van Ballegooijen & Asgari-Targhi 2016),

AT21 (Asgari-Targhi et al. 2021), Ma21 (Matsumoto 2021), Sh18

(Shoda et al. 2018), and Sh21 (Shoda et al. 2021).

from van Ballegooijen & Asgari-Targhi (2016) were ex-

tracted from their Figures 2(a) and 4(c), data points from

Asgari-Targhi et al. (2021) were extracted from their Fig-

ures 4, 5, and 6, data points from Matsumoto (2021) were

extracted from their Figures 2(c) and 2(d), data points from

Shoda et al. (2018) were extracted from their Figures 2(a)

and 2(b), and data points from Shoda et al. (2021) were ex-

tracted from their Figures 3 and 4 and Table 1.

For some of the simulations, Table 1 gives both the full

Elsasser imbalance ratio (for the model containing the den-

sity fluctuations) as well as a minimum ratio correspond-

ing to only wave reflection due to large-scale gradients in

the smooth background atmosphere; the latter is denoted

(Z−/Z+)0 when it is given. To attempt to isolate the effect

of the density fluctuations, the quantity plotted in Figure 3 is

(

Z−

Z+

)

eff

=

√

(

Z−

Z+

)2

−
(

Z−

Z+

)2

0

, (17)

but we also note that this is nearly always a very small correc-

tion. Plotting the full ratio would have produced noticeable

changes in the data points shown in Figure 3(b) only for a

few of the points with the lowest values of Z−/Z+.

Figure 3 shows some degree of agreement between the

modeled trends and the simulated data. We note that no other

significant correlations were found between the Elsasser am-

plitudes and other properties of the turbulence simulations

(say, radial distance from the Sun or background magnetic

field strength). The agreement seen in Figure 3 allows us

to speculate about best-fitting values for N for each group

of data points. To do this, we minimized a χ2 difference

between the base-10 logarithms of the simulated values of

Z−/Z+ and a fine grid of model curves for different values of

N . Because we are attempting to model long-time or ensem-

ble averages of an instrinsically stochastic system, we allow

for non-integer values of N .

For the combined vB16 and AT21 data in Figure 3(b),

the best-fitting value of N was 1.32. Note that these sim-

ulations contain only incompressible Alfvénic fluctuations

that propagate on a background with imposed density fluc-

tuations. In general, an order-unity value of N may make

sense because the eddies in strong MHD turbulence do not

persist forever like sinusoidal wavetrains. They decay, of-

ten substantially, over just one to a few wavelengths or par-

allel correlation lengths (see, e.g., Zhou & Matthaeus 1990;

Goldreich & Sridhar 1995; Schekochihin 2022). Thus, any

given packet of Alfvénic turbulent energy may only live long

enough to interact with one or two of our model density in-

terfaces.

For the data in Figure 3(c), each group was treated sep-

arately. For Sh18, the best-fitting N ≈ 76.7, for Ma21,

the best-fitting N ≈ 21.5, and for Sh21, the best-fitting

N ≈ 3.38. In contrast to the models shown in panel (b),
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these models contain additional nonlinear sources of wave-

like density fluctuations—such as those induced by the para-

metric decay instability—that propagate up and down rela-

tive to the Alfvén waves. Thus, one may expect to see a larger

value of N than in the case of pure Alfvénic turbulence. Note

that the largest effective values of N correspond to the one-

dimensional models of Shoda et al. (2018), in which it has

been suggested that wavetrains have longer lifetimes when

not allowed to evolve in the directions transverse to the back-

ground magnetic field.

These results can be applied to future models of the so-

lar wind that contain reflection-driven Alfvénic turbulence.

Specifically, by defining a “floor” value of δρ/ρ0, below

which we do not expect the solar wind to ever dip below,

we could thus impose a corresponding floor on the Elsasser

imbalance ratio. However, some caution is needed. For ex-

ample, depending on the actual radial length-scales of the

density fluctuations, there may only exist a finite number of

effective interfaces between the Sun and some arbitrary ra-

dial distance r. Thus, it may not be appropriate to use the

largest values of N found above (i.e., N ≈ 75) because there

may not be room for that many interfaces.

4. THE COMPLEX TRANSITION REGION

This paper’s second application of the Stein (1971) re-

flection/transmission theory is to the sharp transition re-

gion (TR) between the Sun’s chromosphere and corona.

There have been multiple studies of how Alfvén waves

are affected when they encounter this thin interface (e.g.,

Hollweg 1978, 1981; Wentzel 1978; Campos & Mendes

1995; Cranmer & van Ballegooijen 2005; Tsap & Kopylova

2021; Shoda & Takasao 2021). Many of these studies as-

sumed a relatively simple geometry for the magnetic field

that threads the TR. However, the properties of wave-

mode conversion at a discontinuity depend sensitively on the

magnetic-field angles α and β shown in Figure 1. Thus,

our goal is to quantify the degree of wave reflection, trans-

mission, and conversion for realistic ensembles of three-

dimensional field-line geometries.

Before describing our model, though, we should note

that numerical simulations of the chromosphere and corona

sometimes have exhibited shortfalls of heating at the TR.

For example, both Wang (1994) and Verdini et al. (2010)

found that producing accurate models of the high-speed solar

wind seemed to require both an extended source of heat—

arising presumably from Alfvénic turbulence—and an ad-

ditional (ad hoc) localized source of heat near the coronal

base. Langangen et al. (2008) also found that adding an ex-

tra source of basal heating was required to understand ob-

servations of the on-disk counterparts of Type II spicules.

Schiff & Cranmer (2016) were only able to model the ther-

modynamic properties of coronal “down-loops” (i.e., loops

in which the temperature decreases toward the apex) by

adding a heat source that behaves like an impulsive source

of compressive MHD wave energy at the TR.

4.1. Inputs Describing the Magnetic Carpet

We make use of an existing set of Monte Carlo

simulations of photospheric magnetic-flux transport

and potential-field extrapolation into the low corona.

Cranmer & van Ballegooijen (2010) developed these mod-

els initially to determine the rates at which closed field

lines open up, and to estimate the rate of energy release

by interchange reconnection in such events. Cranmer

(2018) extended these models to predict the properties of

reconnection-driven MHD waves. We continue to use these

same models of the mixed-polarity “magnetic carpet,” but

we also note that more recent high-resolution data may

point to the need for updating some parameters of these

models (e.g., magnetic recycling times may be shorter; see

Wiegelmann et al. 2013; Wang 2020).

Figure 4(a) shows a typical snapshot of the field-line ge-

ometry for one of these Monte Carlo simulations. The pho-

tospheric domain was assumed to be a square box 200 Mm

on a side, and it was filled with point-like magnetic elements

with positive and negative fluxes given by integer multiples

of 1017 Mx. These models were evolved over several months

of simulation time and have reached a dynamical steady state.

The main free parameter is the large-scale magnetic flux im-

balance fraction ξ, which is defined as the ratio of the net flux

density (|B+| − |B−|) to the absolute unsigned flux density

(|B+| + |B−|). Note that models with ξ . 0.3 are meant

to simulate “balanced” patches of quiet Sun, whereas models

with ξ & 0.7 are meant to simulate more unipolar coronal-

hole regions.

We compared the properties of 11 distinct Monte Carlo

models with flux imbalance ratios ξ = 0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. For each, we extracted a

large ensemble of 500,000 random samples for the field-line

inclinations (i.e., values of α and β) at a typical transition-

region height zTR = 2.5 Mm above the photosphere. The

distributions of β azimuthal angles always appeared to be

reasonably uniform. Figure 4(b) shows the cumulative dis-

tributions of values of cosα for all 11 models. They appear

somewhat isotropic, but slightly biased more towards hori-

zontal orientations. Note that a truly isotropic distribution of

field-line vectors would correspond to a straight line in Fig-

ure 4(b) (y = x) and thus would have a median value of

cosα = 0.5, or a median angle α = 60◦.

Figure 4(c) shows that the actual median values of cosα
take on values between 0.325 and 0.483 (i.e., corresponding

to values of α between 71◦ and 61◦, respectively), with large

standard deviations. The most imbalanced (ξ ≥ 0.7) configu-

rations tend to have more vertically oriented fields than those
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Figure 4. (a) Perspective rendering of field lines for an example

timestep in the ξ = 0.4 model. The height of the TR is illustrated

by the purple outline. (b) Cumulative probability distributions of

cosα for each of the 11 models. (c) Median (50% percentile) and

±1 standard deviation limits (16% and 84% percentiles) for the dis-

tributions of cosα for each value of ξ. Curve colors in (b) agree

with symbol colors in (c).

with balanced fluxes, but the differences are subtle. However,

the departures from vertical fields are important to consider,

since an Alfvén wave incident at an interface with cosα = 1

(i.e., α = 0) would produce no fast or slow magnetosonic

waves in either reflection or transmission.

Each model run in a given Monte Carlo ensemble is con-

structed with randomly selected values of α and β, and these

fully determine the direction of B0 at the interface. The β an-

gles are sampled from a uniform distribution (between 0 and

360◦), and the α angles are sampled from one of the distri-

butions shown in Figure 4(b). The magnitude B0 could also

be sampled from observed or simulated distributions, but for

simplicity we chose to select a single representative value to

apply for each ensemble. Then, later we compare the results

to other ensembles with different values of B0. By varying

the magnetic-field strength over several orders of magnitude

between 0.1 and 1000 G, we can probe the behavior of TR-

adjacent waves for the full range of quiet to active regions in

the solar atmosphere.

For the purposes of the Stein (1971) interface model, we

assume the gas pressure is constant across the TR, with

ρ1
ρ2

=
T2

T1
= 30 (18)

and the chromospheric values (on the side from which the in-

cident wave comes) are ρ1 = 3 × 10−14 g cm−3 and T1 =

104 K. Note that typical quoted temperatures for the chro-

mosphere (104 K) and corona (106 K) would presume the

existence of a larger-magnitude jump of order T2/T1 ≈ 100.

However, the above value of 30 corresponds to only the low-

est and steepest part of the TR that subtends no more than a

few hundred km (see, e.g., Avrett & Loeser 2008). Because

the temperature in the uppermost part of the TR rises more

gradually, this region should not be counted as part of the

sharp interface.

The final parameters to set, for each run in a Monte Carlo

ensemble, are the frequencyω and wavenumberk of the inci-

dent Alfvén wave. Because the interface is assumed to be in-

finitely thin, the actual value of the wave frequency does not

affect the calculation of reflection, transmission, and mode-

coupling. To keep the values of all parameters realistic, we

chose a representative value of ω = 0.02 rad s−1, corre-

sponding to incident Alfvén-wave periods of about 5 minutes

(see, e.g., Tomczyk et al. 2007). The wavenumber is speci-

fied by the dispersion relations and by θk, which we initially

sample randomly between 0 and 180◦. However, we accept

or reject each trial value depending on the resulting value of

ΘkB for the incident Alfvén wave. We explore three distinct

models of turbulent anisotropy that we define below:

1. Model I (isotropic): as long as Fz > 0 for the incident

wave, all values of θk are retained.

2. Model S (slab): only values with Fz > 0 and

| cosΘkB| ≥ 0.9848 (i.e., quasi-parallel orientations

of k within 10◦ of B0) are retained.

3. Model T (transverse): only values with Fz > 0 and

| cosΘkB| ≤ 0.1736 (i.e., k within 10◦ of the plane

perpendicular to B0) are retained.

Note that despite many possible sampled values being re-

jected in models S and T, we keep resampling until the de-

sired total number of trials is achieved.

In summary, each run in a given Monte Carlo ensemble

involves sampling three variables from random distributions
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(α, β, and θk) and keeping others fixed (e.g., ξ, B0, ρ2/ρ1,

T2/T1). Typically, each ensemble was constructed with

30,000 trials, using the Interactive Data Language’s standard

Mersenne Twister algorithm for pseudorandom number gen-

eration (Matsumoto & Nishimura 1998).

4.2. Mode Coupling Results

We begin by discussing the computed distributions of re-

flection and transmission coefficients (for all three types of

MHD waves) for a typical Monte Carlo ensemble run with

B0 = 10 G, the distribution of cosα angles taken from the

ξ = 0.7 model, and an isotropic distribution of θk angles

(i.e., Model I). The adopted value of the magnetic field corre-

sponds to a plasma beta ratio (gas pressure to magnetic pres-

sure) of about 0.01.

Figure 5(a) shows the computed distributions of RAA and

TAA values, displaying reflection coefficients as negative val-

ues for the sake of clarity. In a majority of cases, the com-

puted values are quite close to those predicted by Equa-

tion (8), i.e., RAA = 0.478 and TAA = 0.522, which were

computed assuming β = 0. In fact, 69% of the 30,000 tri-

als have a value of RAA that falls within 10% of its corre-

sponding analytic value, and 67% of the trials have a value

of TAA that falls within 10% of its analytic value. The re-

maining trials—amounting to roughly one-third of the total

number—exhibit values that often indicate substantial cou-

pling with the other modes.

Figures 5(b) and 5(c) show how the reflection and trans-

mission coefficients of fast and slow magnetosonic waves be-

have as a function of the incident Alfvén wave’s ΘkB angle

and the magnetic field’s α angle. In the majority of cases,

these four coefficients have quite small values, pointing to

the relative weakness of mode coupling. We computed the

total flux fractions going into non-Alfvénic modes, i.e.,

f = RFA + TFA +RSA + TSA (19)

and, although f sometimes grows to order unity, the median

value of f (for the full distribution of 30,000 trials) was only

0.00081. Note also that incident waves propagating parallel

to the magnetic field (cosΘkB ≈ 1) tended to couple the

most strongly to the fast mode, and incident waves propagat-

ing transversely to the field (cosΘkB ≈ 0) coupled strongly

to the slow mode. This behavior makes sense in the con-

text of a low-plasma-beta environment, in which fast modes

have similar phase speeds as Alfvén waves for nearly paral-

lel propagation and slow modes have similar phase speeds as

Alfvén waves for nearly perpendicular propagation. Match-

ing phase speeds appears to be a necessary but not sufficient

condition for strong mode coupling (see also Stein 1971;

Vasquez 1990).

When considering the expected energy fluxes of upward

and downward MHD waves that would be produced in the

Figure 5. (a) Transmission (positive) and reflection (negative) co-

efficients for Alfvén waves produced at the TR for a Model-I Monte

Carlo ensemble with B0 = 10 G and ξ = 0.7. (b) Same as

panel (a), but for fast-mode MHD waves. (c) Same as panel (a),

but for slow-mode MHD waves. Symbol color denotes cosα, as

shown in the color-bar.

vicinity of the TR, we compute mean values for the reflection

and transmission coefficients produced in each Monte Carlo

ensemble. This is meant to be a proxy for some degree of

spatial and temporal averaging over unresolved scales in the

complex and rapidly evolving magnetic carpet. Thus, in the

remainder of this section, we report only such mean values.
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Figure 6. Ensemble-averaged reflection coefficients (dashed

curves) and transmission coefficients (solid curves), with Alfvén,

fast, and slow wave properties shown in black, blue, and red, re-

spectively. (a) Dependence on B0 for ξ = 0.7 and Model I. (b)

Dependence on ξ for B0 = 10 G and Model I. Values of f (i.e.,

totals for all four non-Alfvénic components) are shown with purple

symbols.

Figure 6(a) shows how the mode-coupling coefficients be-

have as a function of B0, for fixed choices of ξ = 0.7 and

isotropic incident wavenumbers (Model I). As in the exam-

ple above, for the strongest magnetic-field cases (i.e., the

lowest plasma beta ratios) there is a much more efficient en-

ergy transfer from Alfvén to fast-mode waves than to slow-

mode waves. This trend reverses itself for the weakest fields

(i.e., highest plasma beta ratios), for which the coupling

with slow-mode waves is most efficient. It is also interest-

ing that there is always about an order of magnitude higher

amount of reflection for fast-mode waves than transmission

(i.e., RFA/TFA ≈ 10), but the slow-mode waves seem to be

partitioned more equally between the reflected and transmit-

ted directions.

Figure 6(b) shows how the mean reflection and transmis-

sion coefficients vary as a function of ξ, for fixed values of

B0 = 10 G and isotropic incident wavenumbers (Model I).

Figure 7. Ensemble-averaged reflection and transmission coeffi-

cients, with line styles and colors the same as in Figure 6. In or-

der to illustrate the dependences on wavenumber anisotropy, we use

dotted lines to connect identical parameters.

Varying ξ changes the probability distribution of cosα val-

ues from which the Monte Carlo algorithm draws (see Fig-

ure 4(b)). It is somewhat surprising how little the mean coef-

ficients change as one goes from balanced quiet-Sun patches

(ξ ≈ 0) to highly imbalanced coronal-hole regions (ξ ≈ 1).

It is possible, of course, that there exist other differences be-

tween these regions—such as differences in the mean height

of the TR or different mean values of ρ or T—that would pro-

duce even larger variations in the reflection and transmission

coefficients, had they been included.

Lastly, for the standard set of fixed parameters (B0 = 10 G

and ξ = 0.7), we vary the wavenumber anisotropy model and

show the results in Figure 7. It makes sense that Model S

produces the most intense coupling between Alfvén and fast-

mode waves, since these two modes are the most similar to

one another for parallel propagation (i.e., ΘkB → 0). For the

other extreme case of perpendicular propagation (Model T),

the reflected fast-mode and slow-mode waves have roughly

equal fluxes, and the transmitted slow-mode waves have

about an order of magnitude larger flux than the transmitted

fast-mode waves.

4.3. Collisional Heating Rates

In the solar atmosphere, all three types of MHD waves un-

dergo dissipation due to particle-particle collisions (see, e.g.,

Alfvén 1947; Osterbrock 1961). The specific processes at

work include thermal conductivity, viscosity, electrical re-

sistivity (i.e., Ohmic or Joule dissipation), and a range of

ion–neutral couplings. Both slow-mode and fast-mode mag-

netosonic waves tend to damp out more rapidly than do
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Alfvén waves, which explains the popularity of the latter

as proposed sources of energy deposition in the extended

corona. However, our goal in this section is to simulate the

dissipation of the newly produced slow-mode and fast-mode

waves. This damping appears to produce a localized “bump”

of heating in the vicinity of the TR that may be an important

contributor to the overall coronal heating problem.

We compute the radial variation of wave energy den-

sity Ui, where the subscript i is either F or S for fast-

mode or slow-mode waves, respectively. We use the

time-steady wave-action conservation equation described by

Cranmer & van Ballegooijen (2012), and for simplicity we

provide it here only the limit of a negligibly small solar-wind

speed (which is valid near the TR). Thus,

1

A

d

dr

(

AVgr,iUi

)

= −2γiUi , (20)

where A is the cross-sectional area of a presumed vertically

oriented magnetic flux tube (i.e., A ∝ 1/B0), Vgr,i is the

group velocity of mode i, and γi is its total linear damp-

ing rate. We also define the total heating rate due to damp-

ing as Qi = 2γiUi. Since the above equation will be ap-

plied most often to the isotropic distribution of wavenum-

bers (Model I), we use the angle-averaging procedure de-

scribed in Section 2.3 of Cranmer & van Ballegooijen (2012)

to compute representative values of Vgr,i. Figure 8(a) shows

how some of these quantities depend on height (measured

as distance above the solar photosphere in units of the so-

lar radius, R⊙) in the vicinity of the TR. To set the back-

ground properties of the atmosphere, we chose the coronal-

hole ZEPHYR model of Cranmer et al. (2007) that used a

photospheric acoustic flux of 1 kW m−2.

For a fully ionized plasma, the linear damping rates due

to viscosity, thermal conduction, and Ohmic resistivity were

discussed in detail by, e.g., Braginskii (1965) and Whang

(1997). We use the specific forms given in Appendix B

of Cranmer & van Ballegooijen (2012), which include mod-

ification terms for weak collisions. These were derived in

order to avoid the “molasses limit” of the classical expres-

sions; i.e., an unphysical divergence of the transport coeffi-

cients when the mean time between collisions becomes in-

finite (see also Williams 1995). However, for a plasma that

is only partially ionized, the presence of neutral atoms pro-

duces additional resistivity via Pedersen currents (Goodman

2004, 2011; Kazeminezhad & Goodman 2006). This effect

must be included when modeling the chromosphere and TR.

Thus, the modified version of the total damping rate is given

by the sum of viscous, Ohmic, and conductive terms,

γi = γvis,i + γohm,i(1 + Γ) + γcon,i . (21)

Note that the conductive damping term γcon,i is identically

zero for the purely incompressible Alfvén mode, but it is a

Figure 8. (a) Radial dependence of characteristic velocities such

as the sound speed cs (green dot-dashed curve), Alfvén speed VA

(black dashed curve), and angle-averaged group velocities for fast-

mode (blue solid curve) and slow-mode (red solid curve) waves.

(b) Radial dependence of flux-tube area A (black solid curve) and

collisional damping rates for fast-mode (blue) and slow-mode (red)

waves, with both total values computed with Pedersen conductivity

(solid curves) as well as the fully-ionized Braginskii limit (dashed

curves).

non-negligible contributor to the total damping rate for the

fast and slow mode waves. The Pedersen correction term Γ,

due to the presence of neutrals, is discussed in more detail by

Kazeminezhad & Goodman (2006) and is given by

Γ =

(

ρHI

ρH

)2
ΩeΩp

ν∗e ν
∗
p

(22)

where Ωp and Ωe are the cyclotron frequencies of elec-

trons and protons, and ν∗e and ν∗p are the reduced colli-

sion frequencies defined by Goodman (2004). We spec-

ify the neutral hydrogen density fraction ρHI/ρH with the

same temperature-dependent tabulation that was used by

Cranmer et al. (2007), which has a similar behavior as more

realistic time-dependent models (e.g., Carlsson et al. 2016;

Przybylski et al. 2022).
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Figure 8(b) shows the resulting height dependence of γF
and γS, both with and without the inclusion of the Pedersen

term. We find, as expected, that Γ ≪ 1 in the corona, but

there is a strong enhancement in both damping rates (due to

Γ ≫ 1) in the upper chromosphere. Note that the damp-

ing rates also depend on the square of the wavenumber, so

there is an associated dependence on the wave frequency. As

above, we chose a typical value of ω = 0.02 rad s−1, corre-

sponding to a period of 5 minutes, and we discuss the depen-

dence on ω further below.

In order to solve Equation (20) both above and below the

TR, there are several additional quantities to specify. We are

assuming that mode coupling produces the “new” fast-mode

and slow-mode waves precisely at the TR interface. Thus,

we must use the transmission coefficients to determine the

boundary conditions on Ui for integrating upwards, and we

must use the reflection coefficients to determine the boundary

conditions on Ui for integrating downwards. The interface is

defined as the location at which the time-steady model tem-

perature T (r) is equal to (T1T2)
1/2 = 5.48 × 104 K, and

for this model it is found at a height rTR of 0.0059 R⊙ (i.e.,

4,100 km) above the photospheric base. The incident Alfvén

wave is assumed to have a known vertical energy flux Fz,A

at the interface, and various observational constraints have

provided values of this quantity in the range of roughly 3–

6 kW m−2 (Cranmer & van Ballegooijen 2005, 2012). We

choose the lower bound of that range (3 kW m−2) so as not

to overestimate the heating-rate predictions of this paper. Us-

ing this value, the boundary conditions for the fluxes of trans-

mitted and reflected magnetosonic waves are given as either

Fz,i = Fz,ATiA (for upward waves) or Fz,i = Fz,ARiA (for

downward waves), and the energy densities are given as

Ui = Fz,i/Vgr,i (23)

which we solve four times (for fast and slow modes; in the

upward and downward directions) at the interface.

4.4. Localized Heating Results

Equation (20) was solved numerically by integrating both

upwards and downwards from the TR. Because of the sharp

gradients in this region, we found that straightforward finite-

difference integration steps were often unstable, even with

very finely spaced grids in radial distance. Thus, we took

advantage of the form of the differential equation and noted

that it can be written as

dy

y
= −dr

H
(24)

where y = AVgr,iUi and H = Vgr,i/2γi. This equation has

a known solution for H ≈ constant, so a reasonably robust

finite-differencing scheme, going from step (n) to step (n +

1), was found to be

y(n+1) = y(n) exp

(

−r(n+1) − r(n)

H(n)

)

. (25)

Once y(r) is determined, we compute Ui(r) for each mode,

as well as the corresponding rms velocity amplitudes δvi =

(Ui/ρ)
1/2. This expression makes use of the fact that

linear MHD waves carry exactly half of their total fluc-

tuation energy in the form of kinetic energy (see, e.g.,

Goedbloed & Poedts 2004).

Figure 9(a) shows the computed radial dependences of

wave velocity amplitudes for the typical case shown in Fig-

ure 5; i.e., B0 = 10 G, ξ = 0.7, and an isotropic distri-

bution of θk angles (Model I). We show both the full solu-

tions for slow-mode and fast-mode amplitudes and also those

computed without any damping (i.e., assuming γi = 0).

Note that the upward slow-mode waves become very strongly

damped in the corona, whereas the downward slow-mode

waves experience almost no damping (with the damped am-

plitudes only decreasing to 0.997 times the undamped am-

plitudes). The downward fast-mode waves have the largest

amplitudes of the four magnetosonic waves generated at the

TR, and they are also damped rather weakly (only down to

0.98 times the corresponding undamped amplitudes). Also

shown are the transverse velocity amplitudes of incompress-

ible Alfvénic waves that are computed self-consistently by

the time-steady ZEPHYR model of Cranmer et al. (2007).

These rms amplitudes account for fluctuations in both di-

mensions transverse to the vertical magnetic field. Thus,

the values of ∼50 km s−1 in the low corona correspond

to projected nonthermal line widths of order 50/
√
2 ≈

35 km s−1, which agrees with off-limb measurements (e.g.,

Banerjee et al. 1998).

The corresponding heating rates Qi, expressed in units

of µW m−3, are shown in Figure 9(b). Despite the rel-

atively weak damping for the downward fast-mode waves,

they contribute the most to the heating due to their large am-

plitudes. In fact, it is this component that is most responsible

for the compact “bump” of extra heating due to newly pro-

duced waves at the TR interface. For the model parameters

shown here, the peak of the bump exceeds the background

heating—due Alfvénic turbulence in the ZEPHYR model—

by about a factor of five. This extra heating has been com-

puted without concern for how it would self-consistently al-

ter the presume background plasma state. Given that the ex-

tra heating occurs below the modeled TR, we anticipate that

including it in the time-steady energy balance would lower

the height of the TR. This may help explain why prior gen-

erations of the ZEPHYR code (Cranmer et al. 2007, 2013)

found the TR to occur at heights substantially above those

seen in observationally guided models (e.g., Fontenla et al.

1990; Avrett & Loeser 2008).
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Figure 9. (a) Radial dependence of wave velocity amplitudes

for fast-mode waves (blue curves), slow-mode waves (red curves),

and Alfvénic turbulence from the time-steady model (black dot-

ted curve). For magnetosonic modes, both undamped (dashed)

and damped (solid) amplitudes are shown. (b) Radial dependence

of volumetric heating rates due to fast-mode waves (blue curves),

slow-mode waves (red curves), and Alfvénic turbulence (black dot-

ted curve).

Figure 10 shows how the peak value of Qi depends on B0.

Here, we continue to assume ξ = 0.7 and the wavenum-

ber anisotropy properties of Model I, as in Figure 6(a).

Heating due to newly produced magnetosonic waves at the

TR remains dominated by downward-propagating fast-mode

waves for field strengths exceeding just a few Gauss. In re-

gions with even weaker fields, the peak heating rate is driven

mainly by the damping of both upward and downward slow-

mode waves. The vertical struts show how the model with

B0 = 10 G exhibits either stronger or weaker heating when

the wavenumber anisotropy conditions are varied to Models

S and T (see also Figure 7). Most notably, the assumption

that most of the upflowing Alfvén waves have wavenumbers

nearly parallel to the magnetic field (i.e., Model S) seems to

produce a peak heating rate at the TR that is about 25 times

larger than the expected level of background heating from

Figure 10. Peak heating rates due to the damping of fast-mode

waves (blue curve) and slow-mode waves (red curve), produced at

the TR, as a function of B0 for ξ = 0.7 and Model I. Vertical struts

at B0 = 10 G show how the peak heating rate changes when other

wavenumber anisotropy models are applied (Models S or T). The

typical heating rate due to incompressible Alfvénic turbulence at

the TR is also shown (black dotted curve).

incompressible turbulence. (In a completely self-consistent

model, the heating due to Alfvénic turbulence would vary

with B0 as well, but here we treat this as an aspect of the

“background” atmosphere.)

As mentioned above, the collisional heating rate Qi is pro-

portional to the square of the assumed wave frequency. When

varying ω up and down by several orders of magnitude from

the baseline value of 0.02 rad s−1, we found that the ra-

dial profile of Qi(r) simply shifted up and down by the ex-

pected amount and did not display any noticeable changes

in shape. However, our assumption of a single monochro-

matic frequency is not likely to be realistic. The Sun ap-

pears to exhibit continuous power spectra of wave energy

flux as a function of frequency. If this flux spectrum is a

power-law with P ∝ ω−n, then the spectrum of associated

heating rates would go as Q ∝ ω2−n, and its integral over

frequency would behave as ω3−n. Thus, if n > 3 the to-

tal heating would be dominated by the low-frequency end of

the spectrum, and if n < 3 it would be dominated by the

high-frequency end of the spectrum. Unfortunately, observa-

tions of both chromospheric and coronal waves do not show

a consensus, with reported values of the power-law slopes

varying between 1 and 4 for different regions and diagnostics

(see, e.g., Reardon et al. 2008; Tomczyk & McIntosh 2009;

Molnar et al. 2021, 2023).

For the models with B0 & 3 G discussed above (i.e.,

the cases where the heating is dominated by downward-
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propagating fast-mode waves), the following scaling relation

provides a good way to estimate the peak heating rate at the

TR:

max(QF) ≈ Fz,A〈RFA〉
λeff

(

5 min

P

)2

, (26)

where P is the wave period, 〈RFA〉 is the ensemble-averaged

reflection coefficient for fast-mode waves, and we define an

effective length scale λeff = 0.034R⊙ to set the overall nor-

malization. Other models of the background plasma and ion-

ization state will exhibit different values of λeff , but the other

scalings given above should remain valid.

5. DISCUSSION AND CONCLUSIONS

In this paper we have explored a few of the possible ramifi-

cations of Alfvén waves in the solar atmosphere encountering

sharp discontinuities in density. In Section 3, we found that

linear reflection from multiple interfaces may help explain

simulated enhancements in sunward-propagating Alfvénic

turbulence in the presence of density fluctuations. Over the

past decade, it has been realized that purely incompress-

ible reflection-driven turbulence may not be sufficient to heat

the extended corona and accelerate the solar wind on its

own (e.g., van Ballegooijen & Asgari-Targhi 2016). Without

compressible effects, the inward-to-outward Elsasser ampli-

tude ratioZ−/Z+ may not exceed values of order 0.01. How-

ever, there is a great deal of observational evidence for den-

sity fluctuations with magnitudes δρ/ρ0 exceeding 0.1 in the

corona and solar wind (Issautier et al. 1998; Spangler 2002;

Miyamoto et al. 2014; Hahn et al. 2018; Wexler et al. 2019;

Mohan 2021; Cuesta et al. 2023). The associated reflection

due to these fluctuations may enhance the total amount of

Alfvénic reflection to values of orderZ−/Z+ & 0.1 (see Fig-

ure 3). Those more intense levels of sunward-propagating

waves are much more likely to provide sufficient levels of

turbulent heating for the corona and solar wind.

In Section 4, we found that taking account of a realistic dis-

tribution of magnetic field directions (i.e., the highly struc-

tured “magnetic carpet”) may allow upward-propagating

Alfvén waves to convert a non-negligible fraction of their

energy into both fast-mode and slow-mode MHD waves at

the sharp TR. These newly produced waves dissipate ef-

ficiently in the vicinity of the TR and produce a narrow

peak of heating that, in some cases, may exceed the dom-

inant rate of turbulent heating by an order of magnitude.

These little bumps of extra heating are not likely to be re-

sponsible for the majority of chromospheric or coronal heat-

ing, but their existence should not be ignored. In fact, this

heretofore unknown source of heating may be an explana-

tion for why some models have not been able to produce

realistic coronal temperature distributions without adding

sharp (but essentially ad-hoc) sources of heat at this location

(e.g., Wang 1994; Langangen et al. 2008; Verdini et al. 2010;

Schiff & Cranmer 2016).

It is important to note that our prediction of a narrow bump

of additional heating at the TR is not based on a fully self-

consistent simulation. A more comprehensive understanding

of this effect will require taking into account some additional

processes and complexities, such as the following.

1. More realistic geometrical parameters for the system

should be adopted. This includes the use of self-

consistent distributions of magnetic-field directions

and magnitudes—say, from simulations like Bifrost

(Carlsson et al. 2016; Molnar 2022)—and also a nat-

urally “corrugated” TR interface between the chromo-

sphere and corona (Feldman et al. 1979; Peter 2013).

It may also be useful to separate the closed and open

magnetic field lines to study differences in wave prop-

agation between these two regions.

2. If the Alfvén waves coming from below are already

turbulent by the time they reach the TR (and many

simulations show they are; see van Ballegooijen et al.

2011), then their wavenumber angles θk should be

sampled from a probability distribution that is consis-

tent with the behavior of anisotropic MHD turbulent

cascade.

3. The physics of wave dissipation likely needs to be

treated in a more comprehensive manner. Besides

Pedersen currents, several other channels of ion-

neutral interaction have been proposed to be impor-

tant in the chromosphere (e.g., Khomenko et al. 2018;

Martı́nez-Sykora et al. 2020). Also, the collisional

transport coefficients may also be higher if the elec-

trons, ions, and neutral atoms have non-Maxwellian

velocity distributions (Husidic et al. 2021). Lastly,

our assumption of a simple temperature-dependent

ionization-recombination equilibrium, which includes

only hydrogen, should be replaced by more self-

consistent physics (again, see codes like Bifrost or Mu-

RAM; Carlsson et al. 2016; Przybylski et al. 2022).

4. This work assumed that the only waves incident

to the TR interface were Alfvén waves coming up

from below. Of course, the real wave ecosystem of

the solar atmosphere must also involve magnetosonic

waves coming up from below (e.g., Osterbrock 1961;

de Wijn et al. 2009; Jess et al. 2023) as well as coro-

nal fluctuations that propagate downwards (as we dis-

cussed in Section 3). The near-Sun solar wind is

observed to contain all three types of linear MHD

waves, as well as other compressive fluctuations that

are not normal modes of a homogeneous plasma (e.g.,

Tu & Marsch 1994; Zhao et al. 2021). We still do not
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know to what extent these waves come from the solar

surface or are generated in situ.

This paper has examined several solar applications of

Stein’s (1971) theory of MHD-wave interactions at a sharp

interface, and there are several others that could be ex-

plored as well. For example, closed loops in the low

corona contain two TRs, one at each footpoint, and their fi-

nite length is known to produce resonances (Ionson 1978;

Nakariakov & Verwichte 2005) and “sloshing oscillations”

(Xia et al. 2022). The seemingly infinite regress of multi-

ple reflections and transmissions from Section 3 may be ex-

tended to better understand the behavior of trapped waves

in these loops. Further out in the open-field corona and

solar wind, there exist a wide range of field-aligned den-

sity striations (Raymond et al. 2014; DeForest et al. 2016).

Magyar & Van Doorsselaere (2022) suggested that interac-

tions between Alfvén waves and these striations may result

in the production of a 1/f power spectrum of turbulent fluc-

tuations, which is seen at low frequencies in the solar wind.

Treating these striations as sharp interfaces may lead to new

insights about how they affect MHD waves in various envi-

ronments.
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Table 1. Turbulence Reflection Rates and Density Fluctuations from Published MHD

Simulations

r/R⊙ log(Z−/Z+) log(Z−/Z+)0 log(δρ/ρ0) Source

1.5 –1.2314 –1.7175 –1.0000 vB16

2.4 –1.2098 –1.6048 –1.0000 vB16

3.6 –0.9674 –1.8117 –1.0000 vB16

5.5 –1.0028 –1.9588 –1.0000 vB16

8.4 –0.9067 –2.0498 –1.0000 vB16

13.0 –0.7228 –2.0853 –1.0000 vB16

20.0 –0.7958 –2.0816 –1.0000 vB16

2.0 –1.4367 –1.6351 –1.0458 AT21, Fig. 4(a,b)

4.0 –0.9061 –1.6842 –0.6576 AT21, Fig. 4(a,b)

10.0 –0.7341 –1.7724 –0.6198 AT21, Fig. 4(a,b)

20.0 –0.7434 –1.7570 –0.6990 AT21, Fig. 4(a,b)

2.0 –1.5607 –1.6243 –1.3979 AT21, Fig. 4(d,e)

4.0 –0.8451 –1.6690 –0.6198 AT21, Fig. 4(d,e)

10.0 –0.5699 –1.7103 –0.5229 AT21, Fig. 4(d,e)

20.0 –0.8893 –1.6920 –0.9208 AT21, Fig. 4(d,e)

2.0 –1.4881 –1.6243 –1.1549 AT21, Fig. 4(g,h)

4.0 –0.7443 –1.6651 –0.5686 AT21, Fig. 4(g,h)

10.0 –0.3774 –1.6105 –0.4089 AT21, Fig. 4(g,h)

20.0 –0.8293 –1.6320 –0.8539 AT21, Fig. 4(g,h)

2.0 –0.9788 –1.6243 –0.3979 AT21, Fig. 4(j,k)

4.0 –0.4638 –1.6021 –0.3279 AT21, Fig. 4(j,k)

10.0 –0.2156 –1.4809 –0.3279 AT21, Fig. 4(j,k)

20.0 –0.1963 –1.5431 –0.4559 AT21, Fig. 4(j,k)

2.0 –1.3233 –1.6243 –0.9586 AT21, Fig. 5(a,b)

4.0 –1.0492 –1.6690 –0.8239 AT21, Fig. 5(a,b)

10.0 –0.8239 –1.8182 –0.6198 AT21, Fig. 5(a,b)

20.0 –0.8808 –1.7804 –0.6198 AT21, Fig. 5(a,b)

2.0 –1.5229 –1.6243 –1.3979 AT21, Fig. 5(d,e)

4.0 –1.0231 –1.6842 –0.7959 AT21, Fig. 5(d,e)

10.0 –0.6223 –1.7626 –0.5229 AT21, Fig. 5(d,e)

20.0 –1.0256 –1.7447 –0.7696 AT21, Fig. 5(d,e)

2.0 –1.3979 –1.6243 –1.0458 AT21, Fig. 5(g,h)

4.0 –0.9629 –1.6690 –0.6990 AT21, Fig. 5(g,h)

10.0 –0.5051 –1.7212 –0.4202 AT21, Fig. 5(g,h)

20.0 –0.8751 –1.6778 –0.7212 AT21, Fig. 5(g,h)

2.0 –0.8507 –1.6133 –0.3279 AT21, Fig. 5(j,k)

4.0 –0.6320 –1.5740 –0.4437 AT21, Fig. 5(j,k)

10.0 –0.3010 –1.5963 –0.3279 AT21, Fig. 5(j,k)

Table 1 continued
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Table 1 (continued)

r/R⊙ log(Z−/Z+) log(Z−/Z+)0 log(δρ/ρ0) Source

20.0 –0.3617 –1.5624 –0.3279 AT21, Fig. 5(j,k)

2.0 –1.3413 –1.6189 –0.9586 AT21, Fig. 6(a,b)

4.0 –1.0872 –1.6612 –0.6778 AT21, Fig. 6(a,b)

10.0 –1.1220 –1.8094 –0.6383 AT21, Fig. 6(a,b)

20.0 –1.2900 –1.7917 –0.7212 AT21, Fig. 6(a,b)

2.0 –1.4881 –1.6243 –1.3979 AT21, Fig. 6(d,e)

4.0 –1.0414 –1.6612 –0.6576 AT21, Fig. 6(d,e)

10.0 –1.0189 –1.7913 –0.5528 AT21, Fig. 6(d,e)

20.0 –1.4337 –1.7804 –0.8861 AT21, Fig. 6(d,e)

2.0 –1.3869 –1.6133 –1.0969 AT21, Fig. 6(g,h)

4.0 –1.0170 –1.6368 –0.5850 AT21, Fig. 6(g,h)

10.0 –0.7867 –1.7320 –0.4559 AT21, Fig. 6(g,h)

20.0 –1.3144 –1.7192 –0.8239 AT21, Fig. 6(g,h)

2.0 –0.7855 –1.5786 –0.3565 AT21, Fig. 6(j,k)

4.0 –0.5898 –1.4649 –0.3279 AT21, Fig. 6(j,k)

10.0 –0.5283 –1.5506 –0.3468 AT21, Fig. 6(j,k)

20.0 –0.7570 –1.5017 –0.4685 AT21, Fig. 6(j,k)

1.06 –0.7373 — –0.9788 Ma21

1.1 –0.7460 — –1.0223 Ma21

1.4 –0.6990 — –1.0458 Ma21

2.0 –0.6394 — –0.9393 Ma21

3.0 –0.5500 — –0.8539 Ma21

5.0 –0.4903 — –0.7447 Ma21

11.0 –0.4044 — –1.0000 Ma21

21.0 –0.5654 — –1.0458 Ma21

1.04 –0.4179 — –1.0458 Sh18, λ0 = 0.01 Mm

1.1 –0.5287 — –1.1871 Sh18, λ0 = 0.01 Mm

1.3 –0.7144 — –1.3372 Sh18, λ0 = 0.01 Mm

2.0 –0.8794 — –1.1871 Sh18, λ0 = 0.01 Mm

4.0 –0.7773 — –1.0458 Sh18, λ0 = 0.01 Mm

11.0 –0.6904 — –0.9208 Sh18, λ0 = 0.01 Mm

31.0 –0.7595 — –1.0969 Sh18, λ0 = 0.01 Mm

101.0 –0.7212 — –1.2596 Sh18, λ0 = 0.01 Mm

1.04 –0.3224 — –1.0000 Sh18, λ0 = 0.1 Mm

1.1 –0.3625 — –1.0969 Sh18, λ0 = 0.1 Mm

1.3 –0.4535 — –1.1612 Sh18, λ0 = 0.1 Mm

2.0 –0.4776 — –1.0000 Sh18, λ0 = 0.1 Mm

4.0 –0.3726 — –0.7696 Sh18, λ0 = 0.1 Mm

11.0 –0.2503 — –0.5376 Sh18, λ0 = 0.1 Mm

31.0 –0.2190 — –0.7212 Sh18, λ0 = 0.1 Mm

101.0 –0.2048 — –1.0223 Sh18, λ0 = 0.1 Mm

Table 1 continued
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Table 1 (continued)

r/R⊙ log(Z−/Z+) log(Z−/Z+)0 log(δρ/ρ0) Source

1.04 –0.1574 — –0.9586 Sh18, λ0 = 1 Mm

1.1 –0.1630 — –1.0132 Sh18, λ0 = 1 Mm

1.3 –0.1739 — –1.0044 Sh18, λ0 = 1 Mm

2.0 –0.1637 — –0.7696 Sh18, λ0 = 1 Mm

4.0 –0.1314 — –0.4318 Sh18, λ0 = 1 Mm

11.0 –0.0857 — –0.2218 Sh18, λ0 = 1 Mm

31.0 –0.0857 — –0.3979 Sh18, λ0 = 1 Mm

101.0 –0.0610 — –0.6990 Sh18, λ0 = 1 Mm

1.04 –0.0996 — –0.8861 Sh18, λ0 = 10 Mm

1.1 –0.0996 — –0.9208 Sh18, λ0 = 10 Mm

1.3 –0.1146 — –0.7212 Sh18, λ0 = 10 Mm

2.0 –0.1107 — –0.4559 Sh18, λ0 = 10 Mm

4.0 –0.0904 — –0.2076 Sh18, λ0 = 10 Mm

11.0 –0.0526 — 0.0000 Sh18, λ0 = 10 Mm

31.0 –0.0526 — –0.1135 Sh18, λ0 = 10 Mm

101.0 –0.0701 — –0.3468 Sh18, λ0 = 10 Mm

1.05 –1.3671 — –1.8697 Sh21

2.0 –1.4881 — –1.4815 Sh21

2.54 –1.3777 — –1.3279 Sh21

3.0 –1.3064 — –1.1805 Sh21

3.7 –1.1928 — –1.0000 Sh21

5.0 –1.0394 — –0.8239 Sh21

10.0 –0.9092 — –0.7670 Sh21

20.0 –0.9126 — –0.7959 Sh21

30.0 –0.9062 — –0.9245 Sh21

39.5 –1.0000 — –0.9547 Sh21
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